NON-LINER VIBRATIONS OF A BEAM-MASS SYSTEM UNDER DIFFERENT BOUNDARY CONDITIONS

E. Özkaya, M. Pakdemirlì and H. R. Öz
Department of Mechanical Engineering, Celal Bayar University, 45040 Manisa, Turkey

(Received 17 January 1996, and in final form 3 July 1996)

Abstract

An Euler-Bernoulli beam and a concentrated mass on this beam are considered as a beam-mass system. The beam is supported by immovable end conditions, thus leading to stretching during the vibrations. This stretching produces cubic non-linearities in the equations. Forcing and damping terms are added into the equations. The dimensionless equations are solved for five different set of boundary conditions. Approximate solutions of the equations are obtained by using the method of multiple scales, a perturbation technique. The first terms of the perturbation series lead to the linear problem. Natural frequencies and mode shapes for the linear problem are calculated exactly for different end conditions. Second order non-linear terms of the perturbation series appear as corrections to the linear problem. Amplitude and phase modulation equations are obtained. Non-linear free and forced vibrations are investigated in detail. The effects of the position and magnitude of the mass, as well as effects of different end conditions on the vibrations, are determined.

© 1997 Academic Press Limited

1. INTRODUCTION

Beam-mass systems are frequently used as design models in engineering. Approximate and exact analyses have been carried out for calculating the natural frequencies of a beam-mass system under various end conditions [1-8]. When the amplitudes of vibrations are not small, a non-linear analysis becomes inevitable. The non-linearities may be inserted in different ways. In particular, in the case of immovable end conditions, non-linearities arise due to the axial stretching of the beam during the vibrations. Woinowsky-Krieger [9] and Burgreen [10] were the first to study the effects of axial stretching on the vibrations of beams. Srinivasan [11] applied the Ritz-Galerkin technique to analyze the large amplitude free oscillations of beams and plates with stretching. In addition to stretching, Wrenn and Mayers [12] included the effects of transverse shear and rotary inertia. The work on non-linear beam vibrations up to 1979 has been reviewed by Nayfeh and Mook [13]. Hou and Yuan [14] investigated the design sensitivity of a stretched beam with immovable ends. McDonald [15] investigated the dynamic mode couplings of a hinged beam with uniformly distributed loading. Dokainish and Kumar [16] treated a cantilever beam with a tip mass supported by a non-linear spring. Finally, Pakdemirli and Nayfeh [17] studied the non-linear vibrations of a beam-spring-mass system. The sources of the non-linearities include stretching and a non-linear spring supporting the mass.

In this study, we extend the analysis of reference [17] by considering five different set of boundary conditions. However, we do not include the effects of a non-linear spring, so that we can analyze the effect of stretching with ease. The different boundary conditions, and the location and the magnitude of the mass are the control parameters for our problem.

The method of multiple scales, a perturbation technique, is used to solve the non-linear equations approximately. The first terms in the expansions lead to the linear problem. The natural frequencies and mode shapes are calculated exactly and tabulated for different end conditions, locations of mass and mass ratios. The addition of non-linear terms, then, introduces corrections to the linear problem. The amplitude and phase modulation equations are determined from the non-linear analysis. Free vibrations and forced vibrations with damping are investigated in detail. The effects of mid-plane stretching on the beam vibrations are studied for different control parameters.

2. EQUATIONS OF MOTION

The system considered is a beam with a concentrated mass located at $x=x_{s}$, where x is the spatial co-ordinate along the beam length. Five different cases of support at the ends of the beam are treated, as shown in Figure 1.

The Lagrangian for the system can be written as
$\mathscr{L}=(1 / 2) \int_{0}^{x_{s}} \rho A \dot{w}_{1}^{* 2} \mathrm{~d} x^{*}+(1 / 2) \int_{x_{s}}^{L} \rho A \dot{w}_{2}^{* 2} \mathrm{~d} x^{*}+(1 / 2) M \dot{w}_{1}^{* 2}\left(x_{s}, t^{*}\right)$

$$
-(1 / 2) \int_{0}^{x_{s}} E I w_{1}^{\prime \prime * 2} \mathrm{~d} x^{*}-(1 / 2) \int_{x_{s}}^{L} E I w_{2}^{\prime \prime * 2} \mathrm{~d} x^{*}
$$

$$
\begin{equation*}
-(1 / 2) \int_{0}^{x_{s}} E A\left(u_{1}^{\prime *}+1 / 2 w_{1}^{\prime * 2}\right)^{2} \mathrm{~d} x^{*}-(1 / 2) \int_{x_{s}}^{L} E A\left(u_{2}^{\prime * 2}+1 / 2 w^{\prime * 2}\right)^{2} \mathrm{~d} x^{*} \tag{1}
\end{equation*}
$$

(a)

(b)

(c)

Figure 1. The support end conditions for five different cases. (a) Case I; (b) Case II; (c) Case III; (d) Case IV; (e) Case V.
where L is the length, ρ is the density, A is the cross-sectional area, E is Young's modulus, I is the moment of inertia of the beam cross-section with respect to the neutral axis of the beam, u_{1} and u_{2} are the left and right axial displacements and w_{1} and w_{2} are the left and right transverse displacements with respect to the concentrated mass M. (') denotes differentiation with respect to time t^{*} and ($)^{\prime}$ denotes differentiation with respect to the spatial variable x^{*}. The first three terms in equation (1) are the kinetic energies of the beam and concentrated mass, the following two terms are the potential energies due to bending and the last two terms are the potential energies due to stretching of the beam.
Invoking Hamilton's principle,

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} \mathscr{L} \mathrm{~d} t^{*}=0 \tag{2}
\end{equation*}
$$

and substituting the Lagrangian from equation (1), performing the necessary algebra and eliminating the axial displacements [17], one finally obtains the following non-linear coupled integro-differential equations:

$$
\begin{align*}
& \rho A \ddot{w}_{1}^{*}+E I w_{1}^{i i_{1}^{*}}=\frac{E A}{2 L}\left[\int_{0}^{x_{s}} w_{1}^{\prime *} \mathrm{~d} x^{*}+\int_{x_{s}}^{L} w_{2}^{\prime * 2} \mathrm{~d} x^{*}\right] w_{1}^{\prime \prime *}-\mu^{*} \dot{w}_{1}^{*}+F_{1}^{*} \cos \Omega^{*} t^{*}, \tag{3}\\
& \rho A \ddot{w}_{2}^{*}+E I w_{2}^{i * *}=\frac{E A}{2 L}\left[\int_{0}^{x_{s}} w_{1}^{\prime * 2} \mathrm{~d} x^{*}+\int_{x_{s}}^{L} w_{2}^{\prime * 2} \mathrm{~d} x^{*}\right] w_{2}^{\prime \prime *}-\mu^{*} \dot{w}_{2}^{*}+F_{2}^{*} \cos \Omega^{*} t^{*} . \tag{4}
\end{align*}
$$

Note that viscous damping with damping coefficient μ^{*}, and external excitation with amplitude F_{*}^{*} and frequency Ω^{*} are added to the equations. The boundary conditions at the ends are given in Figure 1 for each case. The boundary conditions at the location of the concentrated mass, which apply to all cases, are as follows:

$$
\begin{gather*}
w_{1}^{*}\left(x_{s}, t^{*}\right)=w_{2}^{*}\left(x_{s}, t^{*}\right), \quad w_{1}^{\prime *}\left(x_{s}, t^{*}\right)=w_{2}^{\prime *}\left(x_{s}, t^{*}\right), \quad w_{1}^{\prime \prime *}\left(x_{s}, t^{*}\right)=w_{2}^{\prime \prime *}\left(x_{s}, t^{*}\right), \tag{5}\\
E I w_{1}^{\prime \prime *}\left(x_{s}, t^{*}\right)-E I w_{2}^{\prime \prime *}\left(x_{s}, t^{*}\right)-M \ddot{w}_{1}^{*}\left(x_{s}, t^{*}\right)=0 . \tag{6}
\end{gather*}
$$

The equations are made dimensionless though the definitions

$$
\begin{gather*}
x=x^{*} / L, \quad w_{1,2}=w_{1,2}^{*} / r, \quad \eta=x_{s} / L, \quad t=\left(1 / L^{2}\right)(E I / \rho A)^{1 / 2} t^{*}, \\
\alpha=M / \rho A L, \quad \Omega=\Omega^{*} L^{2} /(E I / \rho A)^{1 / 2}, \quad \bar{F}_{1,2}=F_{1,2}^{*} / E I r, \quad 2 \bar{\mu}=\left(\mu^{*} L^{2}\right) /(\rho A E I)^{1 / 2}, \tag{7}
\end{gather*}
$$

which, upon substituting into the original equations, yield

$$
\begin{gather*}
\ddot{w}_{1}+w_{1}^{i v}=(1 / 2)\left[\int_{0}^{\eta} w_{1}^{\prime 2} \mathrm{~d} x+\int_{\eta}^{1} w_{2}^{\prime 2} \mathrm{~d} x\right] w_{1}^{\prime \prime}-2 \bar{\mu} \dot{w}_{1}+\bar{F}_{1} \cos \Omega t, \tag{8}\\
\ddot{w}_{2}+w_{2}^{i v}=(1 / 2)\left[\int_{0}^{\eta} w_{1}^{\prime 2} \mathrm{~d} x+\int_{\eta}^{1} w_{2}^{\prime 2} \mathrm{~d} x\right] w_{2}^{\prime \prime}-2 \bar{\mu} \dot{w}_{2}+\bar{F}_{2} \cos \Omega t, \tag{9}\\
w_{1}(\eta, t)=w_{2}(\eta, t), \quad w_{1}^{\prime}(\eta, t)=w_{2}^{\prime}(\eta, t), \quad w_{1}^{\prime \prime}(\eta, t)=w_{2}^{\prime \prime}(\eta, t), \tag{10}\\
w_{1}^{\prime \prime \prime}(\eta, t)-w_{2}^{\prime \prime \prime}(\eta, t)-\alpha \ddot{w}_{1}(\eta, t)=0 . \tag{11}
\end{gather*}
$$

Table 1
E．ÖZKAYA ET AL．

Mode shapes			Transcendental frequency equations
Case I	$\begin{aligned} & \text { Th/tumom, } \\ & Y_{2}(1)=0 \\ & Y_{2}{ }^{\prime \prime}(1)=0 \end{aligned}$	$\begin{aligned} Y_{1}(x)= & C\{\tanh \beta(\cot \beta \sin \beta \eta-\cos \beta \eta) \sin \beta x \\ & +(\tanh \beta \cosh \beta \eta-\sinh \beta \eta) \sinh \beta x\}, \\ Y_{2}(x)= & C\{\tanh \beta \sin \beta \eta(\cot \beta \sin \beta x-\cos \beta x)+\sinh \beta \eta \\ & \times(\tanh \beta \cosh \beta x-\sinh \beta x)\} \end{aligned}$	$\begin{aligned} & 2 \tanh \beta \tan \beta+\alpha \beta\{\tanh \beta \sin \beta \eta \\ & \quad \times(\sin \beta \eta-\tan \beta \cos \beta \eta) \\ & \quad+\tan \beta \sinh \beta \eta(\tanh \beta \cosh \beta \eta-\sinh \beta \eta)\}=0 \end{aligned}$
Case II $\begin{aligned} & \text { Thlomphnm, } \\ & Y_{1}(0)=0 \\ & Y_{1}{ }^{\prime \prime}(0)=0 \end{aligned}$		$\begin{aligned} Y_{1}(x)= & C\{(\cot \beta \cot \beta \eta+1) \sin \beta x-\sinh \beta \eta \cot \beta \operatorname{cosec} \beta \eta \\ & \times(\operatorname{coth} \beta \eta-\tanh \beta) \sinh \beta x\}, \\ Y_{2}(x)= & C\{\cot \beta \cos \beta x+\sin \beta x-\sinh \beta \eta \cot \beta \operatorname{cosec} \beta \eta \\ & \times(\cosh \beta x-\tanh \beta \sinh \beta x)\} \end{aligned}$	$\begin{aligned} & 2 \cos \beta-\alpha \beta\left\{\cos \beta \cos \beta \eta \sin \beta \eta+\sin \beta \sin ^{2} \beta \eta\right. \\ & \quad-\sinh \beta \eta \cos \beta(\cosh \beta \eta-\tanh \beta \sinh \beta \eta)\}=0 \end{aligned}$
$\begin{gathered} \text { Case III } \\ \text { 莠身 } \\ Y_{1}{ }^{\prime}(0)=0 \\ Y_{1}^{\prime \prime \prime}(0)=0 \end{gathered}$		$\begin{aligned} Y_{1}(x) & =C\{(\cos \beta(1-\eta) \sinh \beta \cos \beta x+\sin \beta \cosh \beta(1-\eta) \\ & \cosh \beta x)\}, \\ Y_{2}(x) & =C\{(\cos \beta \eta \sinh \beta(\cos \beta \cos \beta x+\sin \beta \sin \beta x) \\ & +\sin \beta \cosh \beta \eta(\cosh \beta \cosh \beta x-\sinh \beta \sinh \beta x)\} \end{aligned}$	$\begin{aligned} & 2 \sin \beta \sinh \beta+\alpha \beta\{\cos \beta(1-\eta) \sinh \beta \cos \beta \eta \\ & \quad+\sin \beta \cosh \beta(1-\eta) \cosh \beta \eta\}=0 \end{aligned}$
Case IV $\begin{aligned} & \text { Thlomonn } \\ & Y_{1}(0)=0 \\ & Y_{1}{ }^{\prime \prime}(0)=0 \end{aligned}$		$\begin{aligned} Y_{1}(x)= & C\{\{\sin \beta(1-\eta) \cosh \beta-\cos \beta(1-\eta) \sinh \beta \\ & +\sinh \beta \eta\} \sin \beta x+\{\sin \beta \eta-\sin \beta \cosh \beta(1-\eta) \\ & +\cos \beta \sinh \beta(1-\eta)\} \sinh \beta x\}, \\ Y_{2}(x)= & C\{\sin \beta \eta(\sin \beta \cosh \beta-\cos \beta \sinh \beta) \cos \beta x \\ & +\{\sinh \beta \eta-(\cos \beta \cosh \beta+\sin \beta \sinh \beta) \sin \beta \eta\} \sin \beta x \\ & +\{-\sinh \beta \eta(\sin \beta \cosh \beta-\cos \beta \sinh \beta)\} \cosh \beta x \\ & +\{\sin \beta \eta+\sinh \beta \eta(\sin \beta \sinh \beta-\cos \beta \cosh \beta)\} \sinh \beta x\} \end{aligned}$	$2(\sinh \beta \cos \beta-\cosh \beta \sin \beta)+\alpha \beta\{\cosh \beta \eta \sinh \beta \eta$ $-\cos \beta \eta \sin \beta \eta)(\cos \beta \sinh \beta-\sin \beta \cosh \beta)$ $-\sin ^{2} \beta \eta(\sinh \beta \sin \beta+\cosh \beta \cos \beta)$ $-\sinh ^{2} \beta \eta(\cosh \beta \cos \beta-\sinh \beta \sin \beta)$ $+2 \sinh \beta \eta \sin \beta \eta\}=0$
$\begin{gathered} \text { Case V } \\ \text { 楿身 } \\ y_{1} \\ Y_{1}{ }^{\prime}(0)=0 \\ Y_{1}{ }^{\prime \prime \prime}(0)= \end{gathered}$		$\begin{aligned} Y_{1}(x)= & C\{\{\cosh \beta \eta+\sin \beta(1-\eta) \sinh \beta-\cos \beta(1-\eta) \cosh \beta\} \\ & \cos \beta x+\{\cos \beta \eta-\cos \beta \cosh \beta(1-\eta) \\ & \quad-\sin \beta \sinh \beta(1-\eta)\} \cosh \beta x\} \\ Y_{2}(x)= & C\{\cosh \beta \eta+(\sin \beta \sinh \beta-\cos \beta \cosh \beta) \cos \beta \eta\} \cos \beta x \\ & -\{\cos \beta \sinh \beta+\sin \beta \cosh \beta) \cos \beta \eta\} \sin \beta x \\ & +\{\cos \beta \eta-\cosh \beta \eta(\cos \beta \cosh \beta+\sin \beta \sinh \beta)\} \\ & \times \cosh \beta x+\{\cosh \beta \eta(\cos \beta \sinh \beta+\sin \beta \cosh \beta)\} \sinh \beta x\} \end{aligned}$	$\begin{aligned} & 2(\cos \beta \sinh \beta+\sin \beta \cosh \beta)-\alpha \beta\{2 \cos \beta \eta \cosh \beta \eta \\ & \quad+(\cos \beta \sinh \beta+\sin \beta \cosh \beta)(\sinh \beta \eta \cosh \beta \eta \\ & \quad-\cos \beta \eta \sin \beta \eta)+\sin \beta \sinh \beta \\ & \quad \times\left(\cos ^{2} \beta \eta-\cosh ^{2} \beta \eta\right)-\cos \beta \cosh \beta \\ & \left.\times\left(\cos ^{2} \beta \eta+\cosh ^{2} \beta \eta\right)\right\} \end{aligned}$

The end conditions are as in Figure 1, except that all t^{*} will be replaced by t, all L by 1 and w^{*} by w. The term r in equations (7) is the radius of gyration of the beam cross-section and α is the ratio of the concentrated mass to the beam mass.

3. APPROXIMATE ANALYTICAL SOLUTIONS

In this section, we search for the approximate solutions of equations (8) and (9) with the associated boundary conditions. We apply the method of multiple scales (a perturbation technique) $[13,18]$ to the partial differential system and boundary conditions irectly. This direct treatment of partial differential systems (the direct perturbation method) has some advantages over the more common method of discretizing the partial differential system and then applying perturbations (the discretization perturbation method) [19]. In our case, however, both methods would yield identical results, since we are not considering a higher order perturbation scheme.

Due to the absence of quadratic non-linearities, we assume expansions of the forms

$$
\begin{align*}
& w_{1}(x, t ; \epsilon)=\epsilon w_{11}\left(x, T_{0}, T_{2}\right)+\epsilon^{3} w_{13}\left(x, T_{0}, T_{2}\right)+\ldots \tag{12}\\
& w_{2}(x, t ; \epsilon)=\epsilon w_{21}\left(x, T_{0}, T_{2}\right)+\epsilon^{3} w_{23}\left(x, T_{0}, T_{2}\right)+\ldots \tag{13}
\end{align*}
$$

where ϵ is a small book-keeping parameter artifically inserted into the equations. This parameter can be taken as 1 at the end upon keeping in mind, however, that deflections are small. We therefore investigate a weakly non-linear system. $T_{0}=t$ is the fast time scale, whereas $T_{2}=\epsilon^{2} t$ is the slow time scale. We consider only the primary resonance case and hence, the forcing and damping terms are ordered so that they counter the effect of non-linear terms: that is,

$$
\begin{equation*}
\bar{\mu}=\epsilon^{2} \mu, \quad \bar{F}_{1,2}=\epsilon^{3} F_{1,2} . \tag{14}
\end{equation*}
$$

The time derivatives are written as

$$
\begin{equation*}
(\cdot)=D_{0}+\epsilon^{2} D_{2}, \quad(\cdot)=D_{0}^{2}+2 \epsilon^{2} D_{0} D_{2}, \quad D_{n}=\partial / \partial T_{n} \tag{15}
\end{equation*}
$$

In reference [20], the equations governing the vibrations of a uniform beam with stretching and without a concentrated mass were solved by using a version of the Lindstedt-Poincaré technique. In this technique, periodic steady state solutions are assumed a priori, whereas in the method of multiple scales the periodic solutions as well as the transient solutions can be retrieved. As can be seen from our analysis, the expansion of the integral term (T in equation (4b) [20]) is unnecessary.

Inserting equation (12)-(15) into equation (8)-(11) and equating coefficients of like powers of ϵ, one obtains, to order ϵ,

$$
\begin{gather*}
D_{0}^{2} w_{11}+w_{11}^{i v}=0, \quad D_{0}^{2} w_{21}+w_{21}^{i v}=0, \tag{16,17}\\
w_{11}=w_{21}, \quad w_{11}^{\prime}=w_{21}^{\prime}, \quad w_{11}^{\prime \prime}=w_{21}^{\prime \prime}, \quad w_{11}^{\prime \prime \prime}-w_{21}^{\prime \prime \prime}-\alpha D_{0}^{2} w_{11}=0 \quad \text { at } x=\eta, \tag{18}\\
w_{11}=w_{11}^{\prime \prime}=0 \quad \text { at } x=0, \quad w_{21}=w_{21}^{\prime \prime}=0 \quad \text { at } x=1, \tag{19}
\end{gather*}
$$

and, to order ϵ^{3},

$$
\begin{equation*}
D_{0}^{2} w_{13}+w_{13}^{i v}=-2 D_{0} D_{2} w_{11}-2 \mu D_{0} w_{11}+(1 / 2)\left[\int_{0}^{\eta} w_{11}^{\prime 2} \mathrm{~d} x+\int_{\eta}^{1} w_{21}^{\prime 2} \mathrm{~d} x\right] w_{11}^{\prime \prime}+F_{1} \cos \Omega T_{0} \tag{20}
\end{equation*}
$$

$$
\begin{gather*}
D_{0}^{2} w_{23}+w_{23}^{i v}=-2 D_{0} D_{2} w_{21}-2 \mu D_{0} w_{21}+(1 / 2)\left[\int_{0}^{\eta} w_{11}^{\prime 2} \mathrm{~d} x+\int_{\eta}^{1} w_{21}^{\prime 2} \mathrm{~d} x\right] w_{21}^{\prime \prime}+F_{2} \cos \Omega T_{0}, \tag{21}\\
w_{13}=w_{23}, \quad w_{13}^{\prime}=w_{23}^{\prime}, \quad w_{13}^{\prime \prime}=w_{23}^{\prime \prime}, \quad w_{13}^{\prime \prime \prime}-w_{23}^{\prime \prime \prime}-\alpha D_{0}^{2} w_{13}-2 \alpha D_{0} D_{2} w_{11}=0 \quad \text { at } x=\eta \tag{22}\\
w_{13}=w_{13}^{\prime \prime}=0 \quad \text { at } x=0, \quad w_{23}=w_{23}^{\prime \prime}=0 \quad \text { at } x=1 \tag{23}
\end{gather*}
$$

Equations (19) and (23) are the boundary conditions corresponding to Case I. Boundary conditions for other cases can be written in a similar way.

3.1. LINEAR PROBLEM

The problem at order ϵ is linear. We assume a solution of the form

$$
\begin{equation*}
w_{11}=\left[A\left(T_{2}\right) \mathrm{e}^{\mathrm{i} \omega T_{0}}+c c\right] Y_{1}(x), \quad w_{21}=\left[A\left(T_{2}\right) \mathrm{e}^{\mathrm{i} \omega T_{0}}+c c\right] Y_{2}(x), \tag{24,25}
\end{equation*}
$$

where $c c$ represents the complex conjugate of the preceding terms. Substituting equations (24) and (25) into equations (16)-(19), one has

$$
\begin{gather*}
Y_{1}^{i v}-\omega^{2} Y_{1}=0, \quad Y_{2}^{i v}-\omega^{2} Y_{2}=0 \tag{26,27}\\
Y_{1}(\eta)=Y_{2}(\eta), \quad Y_{1}^{\prime}(\eta)=Y_{2}^{\prime}(\eta), \quad Y_{1}^{\prime \prime}(\eta)=Y_{2}^{\prime \prime}(\eta), \tag{28}\\
Y_{1}^{\prime \prime \prime}(\eta)-Y_{2}^{\prime \prime \prime}(\eta)+\alpha \omega^{2} Y_{1}(\eta)=0 \tag{29}
\end{gather*}
$$

The end conditions for the Y_{i} functions are given in Table 1 for each case. Solving equations (26)-(29) exactly for different end conditions yields the mode shapes Y_{i} and natural frequencies ω. The mode shapes and transcendental frequency equations are listed in Table 1, where

$$
\begin{equation*}
\beta=\sqrt{\omega} \tag{30}
\end{equation*}
$$

The transcendental equations were numerically solved for the first five modes. Results are given in Table 2 for the different supporting conditions. For each case, the natural frequencies are listed for different α (the ratio of the concentrated mass to the beam mass) and η (the mass location parameter). Due to the symmetry in Cases I and III, results are given up to $\eta=0.5$.

3.2. NON-LINEAR PROBLEM

Because the homogeneous equations (16)-(19) have a non-trivial solution, the non-homogeneous problem (20)-(23) will have a solution only if a solvability condition is satisfied $[13,18]$. To determine this condition, we first separate the secular and nonsecular terms by assuming a solution of the form

$$
\begin{align*}
& w_{13}=\phi_{1}\left(x, T_{2}\right) \mathrm{e}^{\mathrm{i} \omega T_{0}}+W_{1}\left(x, T_{0}, T_{2}\right)+c c, \tag{31}\\
& w_{23}=\phi_{2}\left(x, T_{2}\right) \mathrm{e}^{\mathrm{i} \omega T_{0}}+W_{2}\left(x, T_{0}, T_{2}\right)+c c . \tag{32}
\end{align*}
$$

Substituting this solution into (20)-(23), we eliminate the terms producing secularities. Hence we deal with that part of the equation determining ϕ_{i} as follows:

$$
\begin{align*}
\phi_{1}^{i v}-\omega^{2} \phi_{1}= & -2 \mathrm{i} \omega\left(A^{\prime}+\mu A\right) Y_{1}+(3 / 2) A^{2} \bar{A}\left[\int_{0}^{\eta} Y_{1}^{\prime 2} \mathrm{~d} x+\int_{\eta}^{1} Y_{2}^{\prime 2} \mathrm{~d} x\right] Y_{1}^{\prime \prime} \\
& +(1 / 2) F_{1} \mathrm{e}^{i \sigma T_{2}} \tag{33}
\end{align*}
$$

Table 2
The first five natural frequencies for different mass ratio, mass location and end conditions Case I

α	η	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}
1	$0 \cdot 0$	9.8695	$39 \cdot 4784$	88.8264	157.9144	$246 \cdot 7413$
	$0 \cdot 1$	8.9962	29.8891	$66 \cdot 0691$	$127 \cdot 2135$	$213 \cdot 3439$
	$0 \cdot 2$	$7 \cdot 4541$	26.9462	$73 \cdot 5140$	149.3992	$246 \cdot 7413$
	$0 \cdot 3$	$6 \cdot 3946$	29.7503	86.7293	$143 \cdot 2258$	209.3172
	$0 \cdot 4$	$5 \cdot 8468$	35.2374	79.9788	$132 \cdot 6574$	$246 \cdot 7413$
	$0 \cdot 5$	$5 \cdot 6795$	$39 \cdot 4784$	$67 \cdot 8883$	$157 \cdot 9144$	$206 \cdot 7901$
10	$0 \cdot 0$	$9 \cdot 8695$	$39 \cdot 4785$	88.8264	157.9144	$246 \cdot 7413$
	$0 \cdot 1$	$5 \cdot 3322$	19.8959	59.0995	122.6556	$210 \cdot 0412$
	$0 \cdot 2$	3.2598	$22 \cdot 0545$	$70 \cdot 7723$	$148 \cdot 0797$	$246 \cdot 7413$
	$0 \cdot 3$	$2 \cdot 5279$	$26 \cdot 7706$	$86 \cdot 1462$	$139 \cdot 3226$	$204 \cdot 6273$
	$0 \cdot 4$	2. 2252	$33 \cdot 6806$	77.2690	128.5117	$246 \cdot 7413$
	$0 \cdot 5$	2.1395	$39 \cdot 4785$	$62 \cdot 4517$	$157 \cdot 9144$	$200 \cdot 6472$

Case II

α	η	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}
1	$0 \cdot 0$	$2 \cdot 4674$	$22 \cdot 2066$	$61 \cdot 6850$	$120 \cdot 9032$	$199 \cdot 8604$
	$0 \cdot 1$	$2 \cdot 4087$	$18 \cdot 3454$	45.1359	$93 \cdot 4431$	$167 \cdot 2211$
	$0 \cdot 2$	$2 \cdot 2578$	14.8086	$46 \cdot 3928$	108.0103	$196 \cdot 6417$
	$0 \cdot 3$	$2 \cdot 0706$	$14 \cdot 2145$	$54 \cdot 4452$	$120 \cdot 0471$	$166 \cdot 6578$
	$0 \cdot 4$	$1 \cdot 8920$	$15 \cdot 3836$	$61 \cdot 6850$	$96 \cdot 2916$	$188 \cdot 1808$
	$0 \cdot 5$	1.7415	17.9539	53.0106	$107 \cdot 5473$	$181 \cdot 7185$
	$0 \cdot 6$	1.6226	21.2279	$45 \cdot 5640$	$118 \cdot 1939$	$173 \cdot 8152$
	$0 \cdot 7$	1.5332	21.9816	50.9158	98.6861	193.0932
	$0 \cdot 8$	1.4706	19.8790	61.6850	$106 \cdot 6180$	165.0326
	$0 \cdot 9$	1.4328	$17 \cdot 8328$	55.9844	$116 \cdot 7804$	198.9933
10	$0 \cdot 0$	$2 \cdot 4674$	22.2066	$61 \cdot 6850$	$120 \cdot 9032$	$199 \cdot 8604$
	$0 \cdot 1$	$2 \cdot 0037$	$10 \cdot 0177$	$36 \cdot 3461$	$87 \cdot 8901$	$163 \cdot 3744$
	$0 \cdot 2$	1.4140	8.9553	$42 \cdot 7450$	105.9953	$196 \cdot 0784$
	$0 \cdot 3$	1.0683	10.0612	52.6275	119.7514	$160 \cdot 1237$
	$0 \cdot 4$	$0 \cdot 8662$	12.2687	$61 \cdot 6850$	$90 \cdot 5702$	$186 \cdot 2925$
	$0 \cdot 5$	0.7395	15.7970	$50 \cdot 3531$	$104 \cdot 6406$	$178 \cdot 6633$
	$0 \cdot 6$	$0 \cdot 6560$	$20 \cdot 5604$	$40 \cdot 8105$	$117 \cdot 5013$	168.9948
	0.7	0.6000	21.8488	$46 \cdot 6505$	$94 \cdot 8383$	191.9832
	$0 \cdot 8$	0.5634	19.0091	61.6850	$101 \cdot 5157$	159.7266
	$0 \cdot 9$	$0 \cdot 5421$	16.5885	54.8768	$116 \cdot 0683$	198.8297
Case III						
α	η	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}
1	$0 \cdot 0$	$6 \cdot 9049$	31.8900	76.4168	$140 \cdot 6264$	224.5502
	$0 \cdot 1$	$7 \cdot 1089$	34.0789	83.5771	$155 \cdot 3912$	$246 \cdot 7413$
	$0 \cdot 2$	$7 \cdot 6615$	38.3503	85.7404	$130 \cdot 1379$	$211 \cdot 7200$
	$0 \cdot 3$	8.4912	$37 \cdot 8853$	68.0983	141.5267	$246 \cdot 7413$
	$0 \cdot 4$	$9 \cdot 4084$	$30 \cdot 6404$	$76 \cdot 1398$	$154 \cdot 1645$	$207 \cdot 5299$
	$0 \cdot 5$	$9 \cdot 8696$	27.6195	88.8265	$127 \cdot 5589$	$246 \cdot 7413$
10	$0 \cdot 0$	$5 \cdot 7774$	30.4219	$74 \cdot 8365$	$138 \cdot 8365$	$222 \cdot 8810$
	$0 \cdot 1$	6.0079	32.8614	$82 \cdot 6412$	154.9477	$246 \cdot 7413$
	$0 \cdot 2$	$6 \cdot 6506$	37.9387	84.3398	$123 \cdot 4099$	$207 \cdot 8470$
	$0 \cdot 3$	7.6992	36.9612	$62 \cdot 5959$	$139 \cdot 1055$	$246 \cdot 7413$
	$0 \cdot 4$	$9 \cdot 0502$	26.9754	73.3548	$153 \cdot 1530$	201•8530
	$0 \cdot 5$	$9 \cdot 8696$	23.1098	88.8260	$121 \cdot 6874$	$246 \cdot 7413$

Table 2-(continued overleaf)

Table 2-(continued)
Case IV

α	η	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}
1	$0 \cdot 0$	$15 \cdot 4182$	49.9648	104.2482	178.2706	272.0322
	$0 \cdot 1$	13.2773	36.9648	78.9377	146.4463	238.6747
	$0 \cdot 2$	$10 \cdot 3964$	35.8279	89.8535	172.3995	$270 \cdot 5268$
	$0 \cdot 3$	8.9482	$41 \cdot 1580$	104.0726	153.4427	237.9214
	$0 \cdot 4$	$8 \cdot 4780$	48.5385	87.0356	158.8255	266.7995
	0.5	$8 \cdot 6977$	$47 \cdot 2840$	84.6891	172.7437	$236 \cdot 1355$
	$0 \cdot 6$	$9 \cdot 0600$	38.6505	103.6283	145.8877	263.2084
	0.7	$11 \cdot 3683$	33.0378	92.2403	178.0890	234.5798
	$0 \cdot 8$	13.8203	33.2808	77.0176	153.7460	259.8318
	0.9	15.2752	$45 \cdot 5767$	79.3377	133.4672	217.8576
10	$0 \cdot 0$	15.4182	49.9648	104.2482	178.2706	272.0322
	$0 \cdot 1$	6.7433	27.4534	72.7327	142.2724	235.5979
	$0 \cdot 2$	4-1459	31.6794	87.4838	171.4502	$270 \cdot 1487$
	$0 \cdot 3$	$3 \cdot 3555$	38.8358	104.0176	$147 \cdot 7781$	$234 \cdot 1359$
	$0 \cdot 4$	3.1307	47.9812	82.5788	$155 \cdot 8378$	265.7259
	0.5	$3 \cdot 2408$	$46 \cdot 2242$	$80 \cdot 2839$	171.5340	$231 \cdot 1555$
	$0 \cdot 6$	$3 \cdot 7035$	35.5186	103.4187	$139 \cdot 9891$	261.8636
	0.7	4.7633	27.8717	90.1184	178.0410	$228 \cdot 1671$
	$0 \cdot 8$	$7 \cdot 2861$	23.1321	72.2886	$151 \cdot 2088$	258.4699
	0.9	13.6268	24.7908	60.5566	$124 \cdot 2400$	212.1305

Case V

α	η	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}
1	$0 \cdot 0$	$2 \cdot 9545$	23.9392	63.4326	$122 \cdot 7165$	201•7195
	$0 \cdot 1$	$3 \cdot 0090$	$25 \cdot 3661$	69.0642	$135 \cdot 4291$	$223 \cdot 2036$
	$0 \cdot 2$	$3 \cdot 1614$	$28 \cdot 4668$	$74 \cdot 0070$	$117 \cdot 3647$	$187 \cdot 0877$
	$0 \cdot 3$	$3 \cdot 4075$	30.1129	$58 \cdot 3002$	$118 \cdot 7904$	$220 \cdot 4928$
	$0 \cdot 4$	$3 \cdot 7522$	$25 \cdot 7223$	$59 \cdot 1356$	$138 \cdot 7920$	$196 \cdot 5491$
	$0 \cdot 5$	$4 \cdot 1970$	20.9093	71.6210	115.0728	216.3253
	$0 \cdot 6$	$4 \cdot 7130$	18.4833	$70 \cdot 3074$	$122 \cdot 8417$	195.9552
	0.7	$5 \cdot 1950$	18.7343	57.8091	$134 \cdot 4440$	$208 \cdot 7476$
	$0 \cdot 8$	$5 \cdot 4925$	22.7446	50.6636	$111 \cdot 6425$	$203 \cdot 5245$
	0.9	$5 \cdot 5858$	$59 \cdot 2073$	61.9712	$102 \cdot 3233$	$172 \cdot 2446$
10	$0 \cdot 0$	$1 \cdot 0756$	$22 \cdot 5620$	$61 \cdot 8705$	$121 \cdot 1012$	$200 \cdot 0584$
	$0 \cdot 1$	$1 \cdot 1036$	$24 \cdot 1652$	68.0335	$134 \cdot 8478$	$222 \cdot 3767$
	$0 \cdot 2$	$1 \cdot 1831$	27.8389	73.7213	$110 \cdot 9462$	182.5687
	$0 \cdot 3$	$1 \cdot 3190$	$30 \cdot 0441$	52.9205	115.6980	$220 \cdot 0772$
	$0 \cdot 4$	$1 \cdot 5302$	23.4686	55.4268	$138 \cdot 7920$	$180 \cdot 4132$
	0.5	$1 \cdot 8570$	$17 \cdot 0896$	$70 \cdot 6208$	$110 \cdot 4096$	$215 \cdot 0827$
	$0 \cdot 6$	$2 \cdot 3796$	$13 \cdot 1964$	$69 \cdot 0978$	$119 \cdot 2071$	$192 \cdot 3353$
	0.7	$3 \cdot 2543$	11.0367	54.4383	$133 \cdot 5758$	205.5496
	$0 \cdot 8$	$4 \cdot 5913$	9.8339	43.9142	$108 \cdot 0872$	201.4753
	$0 \cdot 9$	$5 \cdot 5150$	$19 \cdot 3652$	$38 \cdot 3650$	$89 \cdot 3286$	$165 \cdot 1867$

$$
\begin{align*}
& \phi_{2}^{i v}-\omega^{2} \phi_{2}=-2 \mathrm{i} \omega\left(A^{\prime}+\mu A\right) Y_{2}+(3 / 2) A^{2} \bar{A}\left[\int_{0}^{\eta} Y_{1}^{\prime 2} \mathrm{~d} x+\int_{\eta}^{1} Y_{2}^{\prime 2} \mathrm{~d} x\right] Y_{2}^{\prime \prime} \\
&+(1 / 2) F_{2} \mathrm{e}^{i \sigma T_{2}}, \tag{34}\\
& \phi_{1}=\phi_{2}, \quad \phi_{1}^{\prime}=\phi_{2}^{\prime}, \quad \phi_{1}^{\prime \prime}=\phi_{2}^{\prime \prime}, \quad \phi_{1}^{\prime \prime \prime}-\phi_{2}^{\prime \prime \prime}+\alpha \omega^{2} \phi_{1}-2 \alpha \mathrm{i} \omega A^{\prime} Y_{1}=0 \quad \text { at } x=\eta, \tag{35}\\
& \phi_{1}= \phi_{1}^{\prime \prime}=0 \quad \text { at } x=0, \quad \phi_{2}=\phi_{2}^{\prime \prime}=0 \quad \text { at } x=1 \tag{36}
\end{align*}
$$

In obtaining these equations, we substituted the first order solutions (24) and (25) into equations (20)-(23). We also assumed that the external excitation frequency is close to one of the natural frequencies of the system; that is,

$$
\begin{equation*}
\Omega=\omega+\epsilon^{2} \sigma, \tag{37}
\end{equation*}
$$

where σ is a detuning parameter of order 1 . After some algebraic manipulations, one obtains the solvability condition for equations (33)-(36) as

$$
\begin{equation*}
2 \mathrm{i} \omega\left(A^{\prime}+\mu A\right)+(3 / 2) b^{2} A^{2} \bar{A}+2 \alpha \mathrm{i} \omega A^{\prime} Y_{1}^{2}(\eta)-(1 / 2) f \mathrm{e}^{\mathrm{i} \sigma T_{2}}=0 \tag{38}
\end{equation*}
$$

Table 3
The non-linear frequency correction coefficients

		η	λ
Case I	$\alpha=1$	$0 \cdot 1$	1.6738
		$0 \cdot 3$	$1 \cdot 1764$
		$0 \cdot 5$	1.0593
	$\alpha=10$	$0 \cdot 1$	0.8915
		$0 \cdot 3$	0.4528
		$0 \cdot 5$	$0 \cdot 3968$
Case II	$\alpha=1$	$0 \cdot 2$	$0 \cdot 4224$
		$0 \cdot 4$	0.3531
		$0 \cdot 6$	$0 \cdot 3038$
		$0 \cdot 8$	$0 \cdot 2753$
	$\alpha=10$	$0 \cdot 2$	$0 \cdot 2552$
		$0 \cdot 4$	$0 \cdot 1591$
		$0 \cdot 6$	$0 \cdot 1226$
		$0 \cdot 8$	0. 1052
Case III	$\alpha=1$	$0 \cdot 1$	0.8969
		$0 \cdot 3$	1.3469
		$0 \cdot 5$	0.00137
	$\alpha=10$	$0 \cdot 1$	0.4222
		$0 \cdot 3$	0.9037
		$0 \cdot 5$	$0 \cdot 000286$
Case IV	$\alpha=1$	$0 \cdot 2$	$1 \cdot 1565$
		$0 \cdot 4$	0.9130
		$0 \cdot 6$	0.9546
		$0 \cdot 8$	1.2843
	$\alpha=10$	$0 \cdot 2$	0.4663
		$0 \cdot 4$	$0 \cdot 3395$
		$0 \cdot 6$	0.3260
		$0 \cdot 8$	0.4315
Case V	$\alpha=1$	$0 \cdot 2$	$0 \cdot 1847$
		$0 \cdot 4$	$0 \cdot 2035$
		$0 \cdot 6$	0.2437
		$0 \cdot 8$	0.3046
	$\alpha=10$	$0 \cdot 2$	$0 \cdot 0698$
		$0 \cdot 4$	$0 \cdot 0801$
		$0 \cdot 6$	$0 \cdot 1003$
		$0 \cdot 8$	$0 \cdot 2015$

E. ÖZKAYA ET AL.

Figure 2. Non-linear frequency versus amplitude for different mass location values; first mode, Case II, $\alpha=1$. ,$--- \eta=0 \cdot 2 ;--, \eta=0 \cdot 4 ;--, \eta=0 \cdot 6 ;-, \eta=0 \cdot 8$.
where the equations are normalized by requiring

$$
\begin{equation*}
\int_{0}^{n} Y_{1}^{2} \mathrm{~d} x+\int_{\eta}^{1} Y_{2}^{2} \mathrm{~d} x=1 \tag{39}
\end{equation*}
$$

and the coefficients are defined as follows:

$$
\begin{equation*}
b=\int_{0}^{\eta} Y_{1}^{\prime 2} \mathrm{~d} x+\int_{\eta}^{1} Y_{2}^{\prime 2} \mathrm{~d} x, \quad f=\int_{0}^{\eta} F_{1} Y_{1} \mathrm{~d} x+\int_{\eta}^{1} F_{2} Y_{2} \mathrm{~d} x \tag{40,41}
\end{equation*}
$$

Figure 3. As Figure 2, but Case III.,$---- \eta=0 \cdot 1 ;---, \eta=0 \cdot 3 ;-, \eta=0 \cdot 5$.

Figure 4. As Figure 2, but Case V.,$--- \eta=0 \cdot 2 ;---\eta=0 \cdot 4 ;---. \eta=0 \cdot 6 ;-, \eta=0 \cdot 8$.

Note that condition (38) is valid for all Cases I-V but, of course, the numerical values of b and $Y_{1}(\eta)$ differ for each case.

Equation (38) determines the modulations in the complex amplitudes. We use the polar form to calculate real amplitudes and phases:

$$
\begin{equation*}
A=(1 / 2) a\left(T_{2}\right) \mathrm{e}^{\mathrm{i} \theta\left(T_{2}\right)} . \tag{42}
\end{equation*}
$$

Substituting equation (42) into equation (38), and separating real and imaginary parts, one finally obtains

$$
\omega k a^{\prime}=-\omega \mu a+1 / 2 f \sin \gamma, \quad \omega k a \gamma^{\prime}=\omega k a \sigma-3 / 16 b^{2} a^{3}+1 / 2 f \cos \gamma, \quad(43,44)
$$

Figure 5. Non-linear frequency versus amplitude for different mass ratio values; first mode, Case III, $\eta=0 \cdot 1$. ,$--- \alpha=1 ;----, \alpha=10$.

Figure 6. Non-linear frequency versus amplitude for different boundary conditions; first mode, $\alpha=1, \eta=0.2$ \cdots. Case I; ---- , Case II; ———, Case III; - •- . , Case IV; - , Case V.
where γ and k are defined by

$$
\begin{equation*}
\gamma=\sigma T_{2}-\theta, \quad k=1+\alpha Y_{1}^{2}(\eta) \tag{45}
\end{equation*}
$$

To the first approximation, the beam deflections are given by

$$
w_{1}=\epsilon a \cos (\Omega t-\gamma) Y_{1}(x)+O\left(\epsilon^{3}\right), \quad w_{2}=\epsilon a \cos (\Omega t-\gamma) Y_{2}(x)+O\left(\epsilon^{3}\right), \quad(46,47)
$$

and the amplitudes and phases are governed by equations (43) and (44). Note that equations (43) and (44) allow for finding steady state as well as the transient solutions,

Figure 7. Frequency-response curves for different mass locations; first mode, Case I, $\alpha=1 . \cdots---, \eta=0 \cdot 1$; $---, \eta=0 \cdot 3,-, \eta=0 \cdot 5$.

Figure 8. As Figure 7, but $\alpha=10$.
an advantage of the method used over some other perturbation techniques, such as the harmonic balance or the Lindstedt-Poincaré technique.

4. NUMERICAL RESULTS

We first found the linear natural frequencies for each end conditions (Cases I-V) for various α and η values (Table 2). $\eta=0$ corresponds to the case of beam without mass. Due to symmetry in Cases I and III, natural frequencies were calculated up to the mid-point. When α (the ratio of the concentrated mass to the beam mass) increases, regardless of the supporting conditions, the frequencies are lower. For Case I, due to symmetric support, $\eta=0 \cdot 5$ becomes a node for the second frequency and one observes no change in the natural frequency as α becomes larger. In reference [8], for $\alpha=1$ (ϕ in that reference) and $\eta=0,0 \cdot 1,0 \cdot 2,0 \cdot 3,0 \cdot 4$ and $0 \cdot 5$ (λ in that reference), the fundamental frequency coefficients are given for an Euler-Bernoulli beam which, when squared, are exactly same as our results for Case I.

We next calculated the non-linear frequencies for free undamped vibrations. In equations (43) and (44), we took $\mu=f=\sigma=0$ and obtained

$$
\begin{equation*}
a^{\prime}=0, \quad \theta^{\prime}=(3 / 16)\left(b^{2} / \omega k\right) a^{2} \tag{48,49}
\end{equation*}
$$

From equation (48), $a=a_{0}$ (a constant) and hence the non-linear frequency is

$$
\begin{equation*}
\omega_{n l}=\omega+\theta^{\prime}=\omega+\lambda a_{0}^{2}, \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=(3 / 16)\left(b^{2} / \omega k\right) \tag{51}
\end{equation*}
$$

To this order of approximation, then, the non-linear frequencies have a parabolic relation with the maximum amplitude of vibration. λ can be defined as the non-linear correction coefficient. For different α and η, the non-linear correction coefficients are listed in Table 3 for the first fundamental frequency corresponding to different cases. λ is a measure of the effect of stretching. The non-linearities are of hardening type. One sees from Table 3

Figure 9. Frequency-response, curves for different mass locations; first mode, Case II, $\alpha=1 .----, \eta=0 \cdot 2$; ,$--- \eta=0.4 ;-\longrightarrow, \eta=0.6 ;-, \eta=0.8$.
that the effect of stretching decreases as α increases for all cases. For Cases I and IV, as η shifts to the mid-point, the effect of stretching decreases. For Case II, as η increases, there is a continuous decrease in the effect of stretching. On the other hand, the reverse is true for Case V. For Case III, the effect of stretching is very small for a centre-loaded beam. Some of the above conclusions are shown in Figures 2-6. Figure 2, for Case II, shows the variation of non-linear frequencies with amplitude. As η increases, the natural frequencies ($\omega_{n l}$ at $a_{0}=0$) and the effects of stretching decrease. For Case III, as the mass shifts to the centre, the natural frequencies increase. The stretching effects first increase and then decrease to a negligible value at the centre (Figure 3). For Case V , as η increases,

Figure 10. As Figure 9, but $\alpha=10$.

Figure 11. Frequency-response curves for different mass locations; first mode, Case III, $\alpha=1 .-----, \eta=0 \cdot 1$; ,$---- \eta=0 \cdot 3 ; \longrightarrow, \eta=0 \cdot 5$.
the natural frequencies and the stretching effects both increase (Figure 4). For all cases, the natural frequencies and the stretching effect decrease as α increases. An extreme example of this result is given in Figure 5. For $\eta=0.2$ and $\alpha=1$, the non-linear frequencies for all cases are shown in Figure 6.

Before considering the forced vibrations, it is worth mentioning two of the recent studies on centre-loaded beams with different boundary conditions from the ones we have treated. In the work of Low et al. [21], a theoretical linear analysis was used and it was found that the results of experiments and the theory did not match well for beams of large slenderness ratio. In a later paper by the same authors [22], when stretching effects were included, the

Figure 12. As Figure 11, but $\alpha=10$.

Figure 13. Frequency-response curves for different end conditions; first mode, $\alpha=1, \eta=0 \cdot 2 .---$, Case I; ---- , Case II; - - , Case III; $-\cdots \cdot-$, Case IV; - , Case V.
correlation between theory and experiments was much improved. They observed that the frequencies are higher for a beam under tensile effects due to the immovable boundary conditions, in agreement with what we have found. The tensile effects were calculated approximately using a Ritz procedure.

We now consider the case in which there is damping and external excitation. In equations (43) and (44), when the system reaches the steady state region, a^{\prime} and γ^{\prime} vanish and hence one obtains

$$
\begin{equation*}
\omega \mu a=\frac{1}{2} f \sin \gamma, \quad-\omega k a \sigma+\frac{3}{16} b^{2} a^{3}=\frac{1}{2} f \cos \gamma . \tag{52,53}
\end{equation*}
$$

Squaring and adding both equations and solving for the detuning parameter σ yield

$$
\begin{equation*}
\sigma=\lambda a^{2} \mp \sqrt{\left(\widetilde{f} / 4 \omega^{2} a^{2}\right)-\tilde{\mu}^{2}}, \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{f}=f / k, \quad \tilde{\mu}=\mu / k \tag{55}
\end{equation*}
$$

and λ is defined in equation (51). The detuning parameter shows the nearness of the external excitation frequency to the natural frequency of the system. Several figures have been drawn by using equation (54). In Figure 7, the frequency-response curves for Case I are shown for different η values $(\alpha=1)$. The effect of stretching bends the curves to the right causing multi-valued regions of solution. This phenomena is the well-known jump phenomena. Note that the amplitudes are greater as one shifts to the middle for Case I. For this case, when α is increased, and other parameters kept constant, the multi-valued regions increase drastically, as shown in Figure 8. This same result can be seen from the comparison of Figures 9 and 10, which were drawn for Case II. However, the change is negligible for Case III, as shown in Figures 11 and 12. Case IV is similar to Cases I and II. In Figure 13, for fixed α and $\eta(\alpha=1, \eta=0 \cdot 2)$ frequency response curves for Case I-V are shown on the same plot.

5. SUMMARY AND CONCLUSIONS

The non-linear response of a beam-mass system supported by five different end conditions has been investigated. The ends are immovable so that mid-plane stretching occurs during the vibrations, which produces non-linearities in the equations. Approximate solutions were sought by applying the method of multiple scales directly to the partial differential system. The first terms lead to the linear problem. Mode shapes and natural frequencies were calculated for different mass ratios, mass locations and end conditions. The second terms provide the non-linear corrections to the linear problem. Free and forced vibration with damping were investigated. Non-linear frequency-amplitude variation and frequency response curves have been presented.

As the mass ratio is increased, the natural and non-linear frequencies decrease. If the mass is located at a node, however, the frequencies may remain unchanged. One can observe that the stretching caused a non-linearity of the hardening type. When the mass is increased (α), the effect of stretching on the non-linear frequencies decreases for all cases. When the mass is shifted to the middle, the effect of stretching decreases for Cases I and IV. However, the situation is different for Cases II and V. When the mass is shifted from left to right, there is a continuous increase in stretching effects for Case V, whereas there is a continuous decrease for Case II. Negligible effects of stretching were found for the centre mass position of Case III. For forced and damped vibrations, since the non-linearity is of hardening type, the frequency-response curves are bent to the right, causing an increase in the multi-valued regions. When the mass ratio is increased, the multi-valued regions increase for Cases I, II and IV.

ACKNOWLEDGMENT

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under project no. TBAG-1346.

REFERENCES

1. L. S. Srinath and Y. C. Das 1967 Transaction of the American Society of Mechanical Engineers, Journal of Applied Mechanics, Series E, 784-785. Vibrations of beams carrying mass.
2. R. P. Goel 1976 Journal of Sound and Vibration 47, 9-14. Free vibrations of a beam-mass system with elastically restrained ends.
3. H. Saito and K. Оtомi 1979 Journal of Sound and Vibration 62, 257-266. Vibration and stability of elastically supported beams carrying an attached mass under axial and tangential loads.
4. J. H. Lau 1981 Journal of Sound and Vibration 78, 154-157. Fundamental frequency of a constrained beam.
5. P. A. A. Laura, C. Filipich and V. H. Cortinez 1987 Journal of Sound and Vibration 117, 459-465. Vibrations of beams and plates carrying concentrated masses.
6. C. N. Bapat and C. Bapat 1987 Journal of Sound and Vibration 112, 177-182. Natural frequencies of a beam with non-classical boundary conditions and concentrated masses.
7. W. H. Liu and F. H. Yeh 1987 Journal of Sound and Vibration 117, 555-570. Free vibration of a restrained-uniform beam with intermediate masses.
8. M. J. Maurizi and P. M. Belles 1991 Journal of Sound and Vibration 150, 330-334. Natural frequencies of the beam-mass system: comparison of the two fundamental theories of beam vibrations.
9. S. Woinowsky-Krieger 1950 Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics 17, 35-36. The effect of an axial force on the vibration of hinged bars.
10. D. Burgreen 1951 Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics 18, 135-139. Free vibrations of pin-ended column with constant distance between pin ends.
11. A. V. Srinivasan 1965 American Institute of Aeronautics and Astronautics Journal 3, 1951-1953. Large amplitude-free oscillations of beams and plates.
12. B. G. Wrenn and J. Mayers 1970 American Institute of Aeronautics and Astronautics Journal 8, 1718-1720. Nonlinear beam vibration with variable axial boundary restraint.
13. A. H. Nayfer and D. T. Mook 1979. Nonlinear Oscillations. New York: John Wiley.
14. J. W. Hou and J. Z. Yuan 1988 American Institute of Aeronautics and Astronautics Journal 26, 872-880. Calculation of eigenvalue and eigenvector derivatives for nonlinear beam vibrations.
15. P. H. McDonald 1991 Computers and Structures 40, 1315-1320. Nonlinear dynamics of a beam.
16. M. A. Dokainish and R. Kumar 1971 Experimental Mechanics 11, 263-270. Experimental and theoretical analysis of the transverse vibrations of a beam having bilinear support.
17. M. Pakdemirli and A. H. Nayfeh 1994 Transactions of the American Society of Mechanical Engineers, Journal of Vibration and Acoustics 166, 433-438. Nonlinear vibrations of a beam-spring-mass system.
18. A. H. Nayfeh 1981 Introduction to Perturbation Techniques. New York: Wiley-Interscience.
19. M. Pakdemirli and H. Boyaci 1995 Journal of Sound and Vibration 186, 837-845. Comparison of direct-perturbation methods with discretization-perturbation methods for non-linear vibrations.
20. D. A. Evensen 1968 American Institute of Aeronautics and Astronautics Journal 6, 370-372. Non-linear vibrations of beams with various boundary conditions.
21. K. H. Low, T. M. Lin and G. B. Chai 1993 Computers and Structures 48, 1157-1162. Experimental and analytical investigations of vibration frequencies for centre-loaded beams.
22. G. B. Chai, K. H. Low and T. M. Lim 1995 Journal of Sound and Vibration 181, 727-736. Tension effects on the natural frequencies of centre-loaded clamped beams.
